McKinsey
& Company

Automotive & Assembly Practice

Software ‘should costing
A new procurement tool
for automotive companies

Analytics-based cost algorithms and agile-inspired methods can help
OEMs reduce automotive software costs by up to 30 percent and
improve delivery timelines.

This article was written collaboratively by McKinsey’s Advanced Electronics Practice. The authors include
Roberto Argolini, Ondrej Burkacky, Shannon Johnston, Stefania Pellegrinelli, and Georg Wachter.

——
/ s ®
v g =
/ — _
. ’

September 2020



Faster, cheaper, better. Those are the words

that come to mind when thinking about “should
costing.” This method, which incorporates both
digital technologies and agile principles, involves
using clean-sheet techniques to create a bottom-
up estimate of a supplier’s production costs and
margins. As its name suggests, should costing helps
companies distinguish between the set price of
goods or services and their true value.

The should-costing method is now the gold standard
for hardware purchases at automotive companies,
but largely absent from software procurement.
While this oversight may seem surprising, the
explanation is simple: most automotive procurement
groups are familiar with hardware suppliers and
their work processes but understand relatively little
about software development. Those companies
that can overcome this knowledge gap and apply
should costing to their software projects stand

to win big, since experience suggests they can
potentially reduce costs by up to 30 percent while
simultaneously improving delivery time frames.

Exhibit 1

The growing importance of
automotive software

As new technologies disrupt the automotive industry,
software is becoming progressively more important.
OEMs and other stakeholders increasingly view it

as a key value driver for cars—one that is equally or
more critical than traditional areas, such as power
train and performance. Software that enables
autonomous vehicles, connectivity, electrification,
and shared mobility—often termed ACES—can
strongly influence brand decisions. For example,
McKinsey research shows that 36 percent of
customers would willingly change brands for better
digital and connected services.

In line with these developments, the global market
for automotive software will double from 2020 to
2030. This growth easily outpaces expansion in the
automotive market as a whole, which is expected
toincrease at a little over 3 percent annually during
this period (Exhibit 1).

Strong growth is expected for the automotive software and electrical/

electronic market.

Automotive software and electrical/electronic market, $ billion

500

400

300

200

100

0
2020

2025

Source: McKinsey analysis

Compound
annual growth
rate, 2020-30, %

Other electronic components 3
(harnesses, controls, switches, displays)

Power electronics 15
(excluding battery cells)

Sensors 8

Electronic control units/ 5
digital control units

Integration, verification, 10
and validation services

Software (functions, operating 9
system, middleware)

2030

Software ‘should costing’: A new procurement tool for automotive companies



The challenge of automotive

software procurement

Although OEMs want to capture vehicle control
points and develop at least a portion of their
differentiating software in-house, most still rely
heavily on external hardware and software suppliers
to provide customized solutions. Software that
enables some critical vehicle functions, such as
connectivity and battery management, is often
sourced externally. Likewise, software pure-play
companies frequently design algorithms for vehicle
systems, including machine-learning programs that
control autonomous driving. The situation is similar
at traditional tier-1and tier-2 suppliers, who often
draw on the expertise of their own software vendors
when serving traditional automotive companies.

The same reliance on external sources also holds
true when OEMs are looking for customized
software to run different areas of their businesses—
for instance, Al-powered, vision-based quality-
control systems for manufacturing or pricing and
forecasting algorithms for sales. Among suppliers,
the ongoing digital transformation is prompting
more |IT departments to outsource a larger share

of their software development because they are
struggling to meet increased demand from the

business side. This pattern holds true even among
traditionally cost-focused IT functions.

Shortcomings during automotive-software
procurement negotiations

Automotive stakeholders may be buying more
software, but their procurement groups are still
getting up to speed in this area. They have far to go
before they can deliver a fact-based view of software
costs because they do not have the tools and
capabilities required to create an objective, accurate
view of what products and services should cost.

Software remains a mysterious black box for
procurement groups who often struggle with

cost negotiations because they lack complete
knowledge of suppliers and their development
processes. They have few predeveloped best
practices that they can apply, since most advanced,
high-tech players typically produce most of

their software in-house, on a proprietary basis.

By contrast, they have hardware experts with
in-depth understanding of suppliers, including their
manufacturing techniques, and can easily estimate
costs to specific goods and services.

Most automotive procurement
groups are familiar with hardware
suppliers and their work processes
but understand relatively little about
software development.

Software ‘should costing’: A new procurement tool for automotive companies



The widespread benefits of should
costing for automotive software

The lack of transparency about software
development and associated costs can have major
repercussions. First, and perhaps most important, it
often leads automakers and tier-1suppliers to pay
too much for code. An estimated 10 to 30 percent
gap exists between the best-offered cost and the
should-costing figure (Exhibit 2). The value at stake
can amount to hundreds of millions of dollars for a
typical OEM or large tier-1supplier.

Software should costing, which is the best way to
attain complete transparency, relies on a clean-
sheet, bottom-up model of the production process
to estimate a supplier’s costs and margins. It helps
turn software development from a single black

box to a gray one and ultimately to a set of small,
individual, full-color elements that clearly show all
relevant cost drivers and deliverables. With this level
of detail, buyers can move from a purely commercial
discussion with suppliers and undertake a fact-
based, point-by-point examination of the goods and
services under negotiation.

Exhibit 2

Among other benefits, the should-costing method
can help companies understand the financial impact
of various deal elements, such as suggested team
size, colocation, project duration, and the share of
the workforce located in best-cost countries. For
products, it allows companies to see how different
feature sets or solution architectures will affect
costs. Ultimately, the should-costing method

also helps de-risk software delivery and product
launches by allowing procurement groups to answer
important questions, including:

— How do we evaluate the actual competitiveness
of a single offer?

— Are we receiving the maximum service for our
money?

— How can we tell if the productivity and cost
performance of our vendors are competitive,
and how can we improve them?

These questions are becoming even more
relevant as software increases in complexity
and development requires many engineers and
advanced skills.

Should-costing methods can reduce software costs by 10 to 30 percent.

How software should costing works

Broken down
by function

Software pack

Should-costing benefits:

Improves negotiations
through fact-based
conversations on product
price components

Informs knowledgeable

discussion of supplier’s

team size, co-location
plans, and project duration

Cost assigned
to each function

Cost, $
50,000

B 25000
B 5000

10,000
5,000

m_EE
- _EEEEE
EEEE

De-risks software
development by enhancing
control and allowing OEMs

to challenge the supplier
during development

Helps to create
interoperability regarding
different feature sets or
solution architectures

Software ‘should costing’: A new procurement tool for automotive companies



Gaining a shared, detailed understanding of
software-development costs allows OEMs and
suppliers to develop and grow together. It is the first
stepin a collaborative journey where cost drivers are
not just negotiation points but common problems
that both companies will tackle, step by step.

The options for should costing

When purchasing software, most OEM procurement
departments simply request detailed proposals
from suppliers that break down costs, including
those associated with individual features or specific
teamroles, such as architects, developers, and
testers (Exhibit 3). Purchasing managers then
compare the various offers and use them to
negotiate a “best of best” feature set and price
across different suppliers. While this cost approach
provides an effective basis for negotiations and
supplier-performance management, it does not
convey a true understanding of cost drivers.

Exhibit 3

As they move to should costing, OEMs can select
from two methods: the “T-shirt sizing” approach and
the complexity-point analysis.

Estimating the cost of software via the ‘T-shirt
sizing’ approach

The fastest and easiest should-costing method
involves applying a structured engineering
technique frequently used during agile development
sprints. This approach is common at many tech
companies and involves asking experts to make
relative estimates, rather than absolute estimates,
because people are more likely to understand

their significance. Since relative estimates may be
difficult to visualize in relation to software, consider
how the same process might work with clothes
sizing. When looking at an extra-large T-shirt,
people might not appreciate how big itis. But the
extent of its volume becomes obvious when it is
placed next to an extra-small T-shirt.

Three options exist for custom software cost-planning and procurement

negotiations.

Method comparison

HIGH

Ease/frequence of use

LOW

Machine-learning-based,

RfP' size/quote comparison
(Current method)

T-shirt sizing
(Should-costing method)

complexity-point-analysis approach

(Should-costing method)

Description Request a detailed cost
breakdown for individual
features/roles along the

project timeline; benchmark/

compare different suppliers

Advantages Easy to apply

Disadvantages Imprecise approach;

only provides relative results

'Request for proposals.

Identify software building blocks
(eg, functions); estimate effort
and cost for each building block
via the T-shirt size method

Easy to apply

Rough result;
relative result; difficult
to benchmark

Software ‘should costing’: A new procurement tool for automotive companies

Define the software structure
of the main functionalities/
sub-functionalities or detailed
software functions with their
pseudocode; estimate key
complexity drivers for identified
functionalities; estimate effort
and cost with a machine-
learning-powered
comparison of projects in
a reference database

Limited effort;
precise, top-down approach
with objective results, including
project/resource plans

Analytics-driven black box



Should-costing techniques, already used
for hardware purchasing, must expand
to cover software purchasing to help
companies obtain the best value for

their money.

When applying the T-shirt sizing approach to high-
complexity custom software, expert teams first break
the software into manageable parts—for example,
looking at the software by function or customer
requirement. Second, the teams define size, following
the T-shirt approach, by comparing the parts to
reference projects. The teams typically include about
six steps, from extra-small to extra-extra-large, often
using that same terminology. The estimates follow
the relative size of a Fibonacci series' to offset the
uncertainties inherentin larger projects.

Finally, they convert the size estimate into a cost
value by assigning one T-shirt size an absolute
value (for instance, in man hours or dollars), typically
based on historical in-house projects.

One automotive company created a T-shirt sizing
model for acommon electronic control unit (ECU).
By breaking down the application and base
software layers into individual parts, the team

was able to have a detailed discussion about the
full or partial re-use of individual features in the
next-generation ECU. This strategy helped reduce
development costs by over 25 percent from the
initial estimates.

While T-shirt sizing has the advantage of speed, it
does not allow teams to make comparisons across
different projects, including those run by other
expert groups. T-shirt sizing also uses a limited set of
projects for comparison, and the resulting estimates
do not typically include any effects related to
schedule constraints or best-cost location.

Machine-learning-based complexity-point
analysis approach

In a complexity-point analysis, companies use a
set of reference projects against which they make
standardized comparisons. With very complex

and large software applications that take years

of development and numerous engineers, the
process first breaks the software down into blocks
of manageable complexity. Typically, the blocks are
based on functionalities of customer requirements
and communication needs.

For each building block, teams estimate the key
complexity drivers, which typically include the
number of required tests, variants, and lines of
code as well as the code type (for instance, new
versus legacy). Teams also consider nonfunctional
requirements, such as safety.

For smaller and more limited software applications,
companies can improve their initial estimate

by generating detailed pseudocode and data
structures to calculate the number of functional
points. They then correlate this information with the
needs of overall system features, such as real-time
requirements or parallel computation.

After these steps, players can convert the identified
effort drivers into the actual cost and effort (for
instance, engineering hours) required to deliver the
project through comparisons with a set of relevant
reference projects.

" A series of numbers starting with 0 and 1in which each number is the sum of the two earlier numbers.

Software ‘should costing’: A new procurement tool for automotive companies



The most advanced complexity-point analyses
employ machine-learning algorithms to select

the best reference projects for the comparison,
based on available information. For example, one
McKinsey solution involves having teams estimate
the total effort required by breaking it down into a
project plan that includes staffing needs in various
roles over time. The teams also provide a total cost
estimate, including those associated with trade-
offs, and compare them to those listed in alarge
database of software projects. For instance, teams
might consider whether having all team members
in one location would decrease the number of
employees in best-cost countries, thereby raising
project costs.

A complexity-point analysis typically requires a
limited effort, although that can vary depending

on type of inputs, but it provides a precise and
objective result comparable across projects. This
analysis also allows companies to set constraints,
such as a project start and end date, the number of
simultaneous necessary resources, and staffing
requirements. All these factors can influence team
productivity and are important to consider when

conducting fact-based negotiations with suppliers
to lower costs and optimize project execution.

When estimating the chances of a project’s
success compared to reference projects, or
when conducting scenario analyses, teams can
adjust project constraints. For example, they can
determine how accelerating the timeline would
increase project costs, or look at trade-offs
between the value of individual software features
and their respective development costs.

The increasing importance of custom, high-
complexity software for automotive OEMs and
suppliers is compelling procurement departments to
monitor software spending more closely and improve
their toolboxes. They must go far beyond basic
comparisons of requests for proposal to find the
best price. Should-costing techniques, already well
established for hardware purchasing, must expand
to cover software purchasing to help companies
obtain the best value for their money. OEMs and
tier-1suppliers late to this party may soon regret it.

Roberto Argoliniis an associate partner in McKinsey’s Milan office, where Stefania Pellegrinelliis an expert; Ondrej Burkacky
is a partner in the Munich office; Shannon Johnston is an expert in the Toronto office; and Georg Wachter is a consultant in the

Vienna office.

The authors wish to thank Georg Doll, Mauro Erriquez, Dominik Hepp, and Alfredo Vaghi for their contributions to this article.

Designed by McKinsey Global Publishing
Copyright © 2020 McKinsey & Company. All rights reserved.

Software ‘should costing’: A new procurement tool for automotive companies



