
Automotive & Assembly Practice

Software ‘should costing’:
A new procurement tool
for automotive companies
Analytics-based cost algorithms and agile-inspired methods can help
OEMs reduce automotive software costs by up to 30 percent and
improve delivery timelines.

September 2020

© Monty Rakusen/Getty Images

This article was written collaboratively by McKinsey’s Advanced Electronics Practice. The authors include
Roberto Argolini, Ondrej Burkacky, Shannon Johnston, Stefania Pellegrinelli, and Georg Wachter.

Faster, cheaper, better. Those are the words
that come to mind when thinking about “should
costing.” This method, which incorporates both
digital technologies and agile principles, involves
using clean-sheet techniques to create a bottom-
up estimate of a supplier’s production costs and
margins. As its name suggests, should costing helps
companies distinguish between the set price of
goods or services and their true value.

The should-costing method is now the gold standard
for hardware purchases at automotive companies,
but largely absent from software procurement.
While this oversight may seem surprising, the
explanation is simple: most automotive procurement
groups are familiar with hardware suppliers and
their work processes but understand relatively little
about software development. Those companies
that can overcome this knowledge gap and apply
should costing to their software projects stand
to win big, since experience suggests they can
potentially reduce costs by up to 30 percent while
simultaneously improving delivery time frames.

The growing importance of
automotive software
As new technologies disrupt the automotive industry,
software is becoming progressively more important.
OEMs and other stakeholders increasingly view it
as a key value driver for cars—one that is equally or
more critical than traditional areas, such as power
train and performance. Software that enables
autonomous vehicles, connectivity, electrification,
and shared mobility—often termed ACES—can
strongly influence brand decisions. For example,
McKinsey research shows that 36 percent of
customers would willingly change brands for better
digital and connected services.

In line with these developments, the global market
for automotive software will double from 2020 to
2030. This growth easily outpaces expansion in the
automotive market as a whole, which is expected
to increase at a little over 3 percent annually during
this period (Exhibit 1).

Exhibit 1
Web <2020>
<Automotive software should cost>
Exhibit <1> of <3>

Automotive software and electrical/electronic market, $ billion

Source: McKinsey analysis

Strong growth is expected for the automotive software and electrical/
electronic market.

0

100

200

300

400

500

2020 2025 2030

Software (functions, operating
system, middleware)

Integration, veri�cation,
and validation services

Electronic control units/
digital control units

Sensors

Power electronics
(excluding battery cells)

Other electronic components
(harnesses, controls, switches, displays)

Total

9

10

5

8

15

3

7

Compound
annual growth

rate, 2020–30, %

Strong growth is expected for the automotive software and electrical/
electronic market.

2 Software ‘should costing’: A new procurement tool for automotive companies

The challenge of automotive
software procurement
Although OEMs want to capture vehicle control
points and develop at least a portion of their
differentiating software in-house, most still rely
heavily on external hardware and software suppliers
to provide customized solutions. Software that
enables some critical vehicle functions, such as
connectivity and battery management, is often
sourced externally. Likewise, software pure-play
companies frequently design algorithms for vehicle
systems, including machine-learning programs that
control autonomous driving. The situation is similar
at traditional tier-1 and tier-2 suppliers, who often
draw on the expertise of their own software vendors
when serving traditional automotive companies.

The same reliance on external sources also holds
true when OEMs are looking for customized
software to run different areas of their businesses—
for instance, AI-powered, vision-based quality-
control systems for manufacturing or pricing and
forecasting algorithms for sales. Among suppliers,
the ongoing digital transformation is prompting
more IT departments to outsource a larger share
of their software development because they are
struggling to meet increased demand from the

business side. This pattern holds true even among
traditionally cost-focused IT functions.

Shortcomings during automotive-software
procurement negotiations
Automotive stakeholders may be buying more
software, but their procurement groups are still
getting up to speed in this area. They have far to go
before they can deliver a fact-based view of software
costs because they do not have the tools and
capabilities required to create an objective, accurate
view of what products and services should cost.

Software remains a mysterious black box for
procurement groups who often struggle with
cost negotiations because they lack complete
knowledge of suppliers and their development
processes. They have few predeveloped best
practices that they can apply, since most advanced,
high-tech players typically produce most of
their software in-house, on a proprietary basis.
By contrast, they have hardware experts with
in-depth understanding of suppliers, including their
manufacturing techniques, and can easily estimate
costs to specific goods and services.

Most automotive procurement
groups are familiar with hardware
suppliers and their work processes
but understand relatively little about
software development.

3Software ‘should costing’: A new procurement tool for automotive companies

The widespread benefits of should
costing for automotive software
The lack of transparency about software
development and associated costs can have major
repercussions. First, and perhaps most important, it
often leads automakers and tier-1 suppliers to pay
too much for code. An estimated 10 to 30 percent
gap exists between the best-offered cost and the
should-costing figure (Exhibit 2). The value at stake
can amount to hundreds of millions of dollars for a
typical OEM or large tier-1 supplier.

Software should costing, which is the best way to
attain complete transparency, relies on a clean-
sheet, bottom-up model of the production process
to estimate a supplier’s costs and margins. It helps
turn software development from a single black
box to a gray one and ultimately to a set of small,
individual, full-color elements that clearly show all
relevant cost drivers and deliverables. With this level
of detail, buyers can move from a purely commercial
discussion with suppliers and undertake a fact-
based, point-by-point examination of the goods and
services under negotiation.

Among other benefits, the should-costing method
can help companies understand the financial impact
of various deal elements, such as suggested team
size, colocation, project duration, and the share of
the workforce located in best-cost countries. For
products, it allows companies to see how different
feature sets or solution architectures will affect
costs. Ultimately, the should-costing method
also helps de-risk software delivery and product
launches by allowing procurement groups to answer
important questions, including:

	— How do we evaluate the actual competitiveness
of a single offer?

	— Are we receiving the maximum service for our
money?

	— How can we tell if the productivity and cost
performance of our vendors are competitive,
and how can we improve them?

These questions are becoming even more
relevant as software increases in complexity
and development requires many engineers and
advanced skills.

Exhibit 2
Web <2020>
<Automotive software should cost>
Exhibit <2> of <3>

How software should costing works

Should-costing bene	ts:

Should-costing methods can reduce software costs by 10 to 30 percent.

Improves negotiations
through fact-based

conversations on product
price components

Informs knowledgeable
discussion of supplier’s
team size, co-location

plans, and project duration

De-risks software
development by enhancing
control and allowing OEMs
to challenge the supplier

during development

Helps to create
interoperability regarding
di�erent feature sets or
solution architectures

Software pack
Broken down
by function

Cost assigned
to each function

5,000

10,000

15,000

25,000

50,000

Cost, $

Should-costing methods can reduce software costs by 10 to 30 percent.

4 Software ‘should costing’: A new procurement tool for automotive companies

Gaining a shared, detailed understanding of
software-development costs allows OEMs and
suppliers to develop and grow together. It is the first
step in a collaborative journey where cost drivers are
not just negotiation points but common problems
that both companies will tackle, step by step.

The options for should costing
When purchasing software, most OEM procurement
departments simply request detailed proposals
from suppliers that break down costs, including
those associated with individual features or specific
team roles, such as architects, developers, and
testers (Exhibit 3). Purchasing managers then
compare the various offers and use them to
negotiate a “best of best” feature set and price
across different suppliers. While this cost approach
provides an effective basis for negotiations and
supplier-performance management, it does not
convey a true understanding of cost drivers.

As they move to should costing, OEMs can select
from two methods: the “T-shirt sizing” approach and
the complexity-point analysis.

Estimating the cost of software via the ‘T-shirt
sizing’ approach
The fastest and easiest should-costing method
involves applying a structured engineering
technique frequently used during agile development
sprints. This approach is common at many tech
companies and involves asking experts to make
relative estimates, rather than absolute estimates,
because people are more likely to understand
their significance. Since relative estimates may be
difficult to visualize in relation to software, consider
how the same process might work with clothes
sizing. When looking at an extra-large T-shirt ,
people might not appreciate how big it is. But the
extent of its volume becomes obvious when it is
placed next to an extra-small T-shirt.

Exhibit 3

Web <2020>
<Automotive software should cost>
Exhibit <3> of <3>

Three options exist for custom software cost-planning and procurement
negotiations.

1Request for proposals.

Advantages

RfP1 size/quote comparison
(Current method)

Request a detailed cost
breakdown for individual
features/roles along the

project timeline; benchmark/
compare di�erent suppliers

T-shirt sizing
(Should-costing method)

Method comparison

Identify software building blocks
(eg, functions); estimate e�ort

and cost for each building block
via the T-shirt size method

Machine-learning-based,
complexity-point-analysis approach

(Should-costing method)

HIGH Ease/frequence of use LOW

De�ne the software structure
of the main functionalities/

sub-functionalities or detailed
software functions with their
pseudocode; estimate key

complexity drivers for identi�ed
functionalities; estimate e�ort

and cost with a machine-
learning-powered

comparison of projects in
a reference database

Easy to apply Easy to apply Limited e�ort;
precise, top-down approach

with objective results, including
project/resource plans

Disadvantages Imprecise approach;
only provides relative results

Rough result;
relative result; di�cult

to benchmark

Analytics-driven black box

Description

Three options exist for custom software cost-planning and procurement
negotiations.

5Software ‘should costing’: A new procurement tool for automotive companies

When applying the T-shirt sizing approach to high-
complexity custom software, expert teams first break
the software into manageable parts—for example,
looking at the software by function or customer
requirement. Second, the teams define size, following
the T-shirt approach, by comparing the parts to
reference projects. The teams typically include about
six steps, from extra-small to extra-extra-large, often
using that same terminology. The estimates follow
the relative size of a Fibonacci series1 to offset the
uncertainties inherent in larger projects.

Finally, they convert the size estimate into a cost
value by assigning one T-shirt size an absolute
value (for instance, in man hours or dollars), typically
based on historical in-house projects.

One automotive company created a T-shirt sizing
model for a common electronic control unit (ECU).
By breaking down the application and base
software layers into individual parts, the team
was able to have a detailed discussion about the
full or partial re-use of individual features in the
next-generation ECU. This strategy helped reduce
development costs by over 25 percent from the
initial estimates.

While T-shirt sizing has the advantage of speed, it
does not allow teams to make comparisons across
different projects, including those run by other
expert groups. T-shirt sizing also uses a limited set of
projects for comparison, and the resulting estimates
do not typically include any effects related to
schedule constraints or best-cost location.

Machine-learning-based complexity-point
analysis approach
In a complexity-point analysis, companies use a
set of reference projects against which they make
standardized comparisons. With very complex
and large software applications that take years
of development and numerous engineers, the
process first breaks the software down into blocks
of manageable complexity. Typically, the blocks are
based on functionalities of customer requirements
and communication needs.

For each building block, teams estimate the key
complexity drivers, which typically include the
number of required tests, variants, and lines of
code as well as the code type (for instance, new
versus legacy). Teams also consider nonfunctional
requirements, such as safety.

For smaller and more limited software applications,
companies can improve their initial estimate
by generating detailed pseudocode and data
structures to calculate the number of functional
points. They then correlate this information with the
needs of overall system features, such as real-time
requirements or parallel computation.

After these steps, players can convert the identified
effort drivers into the actual cost and effort (for
instance, engineering hours) required to deliver the
project through comparisons with a set of relevant
reference projects.

Should-costing techniques, already used
for hardware purchasing, must expand
to cover software purchasing to help
companies obtain the best value for
their money.

1	A series of numbers starting with 0 and 1 in which each number is the sum of the two earlier numbers.

6 Software ‘should costing’: A new procurement tool for automotive companies

The most advanced complexity-point analyses
employ machine-learning algorithms to select
the best reference projects for the comparison,
based on available information. For example, one
McKinsey solution involves having teams estimate
the total effort required by breaking it down into a
project plan that includes staffing needs in various
roles over time. The teams also provide a total cost
estimate, including those associated with trade-
offs, and compare them to those listed in a large
database of software projects. For instance, teams
might consider whether having all team members
in one location would decrease the number of
employees in best-cost countries, thereby raising
project costs.

A complexity-point analysis typically requires a
limited effort, although that can vary depending
on type of inputs, but it provides a precise and
objective result comparable across projects. This
analysis also allows companies to set constraints,
such as a project start and end date, the number of
simultaneous necessary resources, and staffing
requirements. All these factors can influence team
productivity and are important to consider when

conducting fact-based negotiations with suppliers
to lower costs and optimize project execution.

When estimating the chances of a project’s
success compared to reference projects, or
when conducting scenario analyses, teams can
adjust project constraints. For example, they can
determine how accelerating the timeline would
increase project costs, or look at trade-offs
between the value of individual software features
and their respective development costs.

The increasing importance of custom, high-
complexity software for automotive OEMs and
suppliers is compelling procurement departments to
monitor software spending more closely and improve
their toolboxes. They must go far beyond basic
comparisons of requests for proposal to find the
best price. Should-costing techniques, already well
established for hardware purchasing, must expand
to cover software purchasing to help companies
obtain the best value for their money. OEMs and
tier-1 suppliers late to this party may soon regret it.

Designed by McKinsey Global Publishing
Copyright © 2020 McKinsey & Company. All rights reserved.

Roberto Argolini is an associate partner in McKinsey’s Milan office, where Stefania Pellegrinelli is an expert; Ondrej Burkacky
is a partner in the Munich office; Shannon Johnston is an expert in the Toronto office; and Georg Wachter is a consultant in the
Vienna office.

The authors wish to thank Georg Doll, Mauro Erriquez, Dominik Hepp, and Alfredo Vaghi for their contributions to this article.

7Software ‘should costing’: A new procurement tool for automotive companies

